TO INITIATE MONITORING, YOU NEED: **STARLING** MONITOR AND SENSORS

DOES MY PATIENT HAVE A LOW BLOOD PRESSURE/MAP OR PERFUSION PROBLEM (I.E., LOW UOP/HIGH LACTATE)?

DO I NEED TO GIVE FLUID?

(only ~50% of hemodynamically unstable patients are fluid responsive!)

DYNAMIC ASSESSMENT

PLR
- 3 min baseline
- 3 min challenge

* Turn off SCDs for set up and duration of PLR.

BOLUS
- 3 min baseline
- Challenge

- 250 ml in <5 min
- OR 500 ml in <10 min

RESULTS: ±10% ΔSVI patient is likely fluid responsive

<10% ΔSVI (including negative numbers) patient is not likely fluid responsive

Wloul you like to start immediately from the challenge stage?” means “Can I use the last 3 minutes of SVI data as my baseline?” (i.e, no nursing interventions)

Baseline shows unstable results means the last 3 SVI readings have changed more than 10%. Consider repeating baseline.

CALIBRATION VS. BASELINE:

Calibration = signal optimization occurs during initial pt. set-up.

Baseline = initial SVI readings of a dynamic assessment

SENSORS:

- “Box in” the heart
- Red dashes indicate right/left and upper/lower
- White tabs point to toes
- Can be on front or back in any combination

NEED TO RECALIBRATE:

(Session Controls > Recalibrate)

- If any or all sensors are moved or replaced
- Once a shift

Baxter

Starling

FLUID MANAGEMENT MONITORING SYSTEM
Clinical Shock States

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal Adult Range</th>
<th>Cardiogenic Shock</th>
<th>Septic Shock</th>
<th>Hypovolemic Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP (MAP)</td>
<td>> 65</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Heart Rate (HR)</td>
<td>60–100</td>
<td>↑ early</td>
<td>↑ late</td>
<td>↓ late</td>
</tr>
<tr>
<td>Cardiac Index (CI)</td>
<td>2.5–4.0 L/min/m²</td>
<td>↓</td>
<td>↑ 10%</td>
<td>↑ 10%</td>
</tr>
<tr>
<td>Total Peripheral Resistance Index (TPRI)</td>
<td>1970–2390 dynes • sec/cm²/m²</td>
<td>↑</td>
<td>↓ late</td>
<td>↓ late</td>
</tr>
</tbody>
</table>

Changes in Stroke Volume Index (ΔSVI) to Dynamic Assessment
- ΔSVI <10%: Unlikely to be Fluid Responsive
- ΔSVI ≥10%: Likely to be Fluid Responsive

Hemodynamic Parameters

Shock States
- **Septic Shock**: Mean Arterial Pressure (MAP) ≥70–105 mmHg; Cardiac Index (CI) ≥60 mL/beat/m²
- **Hypovolemic Shock**: Mean Arterial Pressure (MAP) ≥80 mmHg; Cardiac Index (CI) ≥60 mL/beat/m²

Hypovolemic Shock
- Mean Arterial Pressure (MAP) ≥80 mmHg; Cardiac Index (CI) ≥60 mL/beat/m²

Cardiogenic Shock
- Cardiac Index (CI) ≥4.0 L/min/m²

Dynamic Assessments Directly Challenge the Heart with Volume to Measure its Response:

Passive Leg Raise (PLR) Maneuver
- Translocation of 250-300cc of blood from lower extremities into the heart

Fluid Bolus Challenge (FB)
- Rapid Infusion of 250cc of fluid over 3-5 minutes

Normal Hemodynamic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
<th>Normal adult range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke Volume (SV)</td>
<td>CO/HR x 1000</td>
<td>60 – 100 mL/beat</td>
</tr>
<tr>
<td>Stroke Volume Index (SVI)</td>
<td>SV/BSA</td>
<td>33 – 47 mL/beat/m²</td>
</tr>
<tr>
<td>Δ Stroke Volume Index (ΔSVI)</td>
<td>Change in SV after Dynamic Assessment</td>
<td>≥10% Likely to be Fluid Responsive</td>
</tr>
<tr>
<td>Cardiac Output (CO)</td>
<td>HR x SV/1000</td>
<td>4.0 – 8.0 L/min</td>
</tr>
<tr>
<td>Cardiac Index (CI)</td>
<td>CO/BSA</td>
<td>2.5 – 4.0 L/min/m²</td>
</tr>
<tr>
<td>Mean Arterial Pressure (MAP)</td>
<td>(SBP + (2 x DBP))/3</td>
<td>70 – 105 mmHg</td>
</tr>
<tr>
<td>Total Peripheral Resistance (TPR)</td>
<td>80 x (MAP/CO)</td>
<td>800 – 1200 dynes • sec/cm²</td>
</tr>
<tr>
<td>Total Peripheral Resistance Index (TPRI)</td>
<td>80 x (MAP/CI)</td>
<td>1970 – 2390 dynes • sec/cm²/m²</td>
</tr>
</tbody>
</table>

Changes in Stroke Volume Index (ΔSVI) to Dynamic Assessment
- ΔSVI ≥10% Predictive of 15% increase in CO with 500cc

Systemic Hemodynamics and Hemodynamic Management

DISCLAIMER:
This document and all content in it are for general information purposes only and are not intended to be specific medical advice, medical opinion, diagnosis or treatment as applied to any particular patient’s condition or situation. Please do not rely on this document or its content as a substitute for the expertise and professional judgment of a physician, pharmacist, nurse, or other healthcare professional. Baxter and Starling are trademarks of Baxter International Inc. or its subsidiaries. USMP/CHE/20-0020 04/20

Rx Only. For safe and proper use of product mentioned herein, please refer to the Instructions for Use or Operators Manual. Baxter.com Baxter International Inc. One Baxter Parkway / Deerfield, Illinois 60015

Patient Selection Tool

- **Shock States/Low Blood Pressure**: Sepsis, Low Vascular Tone, Low Cardiac Output, Hypovolemia, Neurogenic Shock
- **Patients treated with Inotropes, Vasopressors or Vasodilators**
- **Surgical Patients**: Perioperative Volume Management, Goal Directed Therapy, Enhanced Recovery After Surgery (ERAS)
- **Emergency/Trauma Patients**
- **Other Critical Care Conditions**: Acute Respiratory Distress (ARDS), Sub-Arachnoid Hemorrhage (SAH), Acute Kidney Injury (AKI), Congestive Heart Failure (CHF)
- **Patients undergoing Continuous Renal Replacement Therapy (CRRT) or patients undergoing hemodialysis**

Only ~50% of hemodynamically unstable patients will respond to fluid by increasing cardiac output and perfusion.